miércoles, 24 de noviembre de 2010

SUMA DE LOS TERMINOS DE UNA PROGRESION GEOMETRICA

Suma de los primeros n términos de una progresión geométrica

Se denomina como Sn a la suma de n términos consecutivos de una progresión geométrica:
Sn = a1 + a2 + ... + an-1 + an
Si se quiere obtener una fórmula para calcular de una manera rápida dicha suma, se multiplica ambos miembros de la igualdad por la razón de la progresión r.
 S_n r = (a_1 + a_2 + ... + a_{n-1} + a_n) r   \Rightarrow   S_n r = a_1 r + a_2 r + ... + a_{n-1} r + a_n r
Si se tiene en cuenta que al multiplicar un término de una progresión geométrica por la razón se obtiene el término siguiente de esa progresión,
Sn r = a2 + a3 + ... + an + an r
Si se procede a restar de esta igualdad la primera:
Sn r = a2 + a3 + ... + an + an r
Sn = a1 + a2 + ... + an-1 + an
_______________________________
Sn r - Sn = - a1 + an r
o lo que es lo mismo,
Sn ( r - 1 ) = an r - a1
Si se despeja Sn,
 S_n = \cfrac { a_n r - a_1 } { r - 1 }
De esta manera se obtiene la suma de los n términos de una progresión geométrica cuando se conoce el primer y el último término de la misma. Si se quiere simplificar la fórmula, se puede expresar el término general de la progresión an como
an = a1 rn-1
Así, al sustituirlo en la fórmula anterior se tiene lo siguiente:
 S_n = \cfrac { a_1 r^{n-1} r - a_1 } { r - 1 } = \cfrac { a_1 r^n - a_1 } { r - 1 }  = \cfrac { a_1 ( r^n - 1 ) } { r - 1 }
con lo que se obtiene la siguiente igualdad:
 S_n = a_1 \cfrac { r^n - 1 } { r - 1 }
Con esta fórmula se puede obtener la suma de n términos consecutivos de una progresión geométrica con sólo saber el primer término a sumar y la razón de la progresión.
Si queremos calcular el resultado de una suma de n términos consecutivos, pero sin que empiece en cero, debemos utilizar la expresión:
\sum_{k=m}^n ar^k=\frac{a(r^{n+1}-r^m)}{r-1}.

Suma de términos infinitos de una progresión geométrica

Si el valor absoluto de la razón es menor que la unidad | r | < 1, la suma de los infinitos términos decrecientes de la progresión geométrica converge hacia un valor finito. En efecto, si | r | < 1,  r^\infty tiende hacia 0, de modo que:
S_\infty  = a_1 \cfrac{r^\infty  - 1}{r - 1}=a_1 \cfrac{0 - 1}{r - 1}=\cfrac{a_1}{1 - r}
En definitiva, la suma de los infinitos términos de una progresión geométrica de razón inferior a la unidad se obtiene utilizando la siguiente fórmula:
S_\infty = \cfrac{a_1}{1 - r}

PROGRESION GEOMETRICA

Una sucesión geométrica está constituida por una secuencia de elementos en la que cada uno de ellos se obtiene multiplicando el anterior por una constante denominada razón o factor de la progresión. Se suele reservar el término progresión cuando la secuencia tiene una cantidad finita de términos mientras que se usa sucesión cuando hay una cantidad infinita de términos, si bien, esta distinción no es estricta.
Así, 5, 15, 45, 135, 405,...\, es una progresión geométrica con razón igual a 3, porque:
15 = 5 × 3
45 = 15 × 3
135 = 45 × 3
405 = 135 × 3
y así sucesivamente.
Aunque es más fácil aplicando la fórmula:
a_n = {a_m}{r^{(n-m)}}\,
Siendo a_n\, el término en cuestión, a_m\, el primer término y r\, la razón:
a_n = {a_1}{r^{(n-1)}}\,
Así quedaría si queremos saber el 6º término de nuestra progresión
a_6 = {5}({3^{(6-1)}})\,
a_6 = {5}({3^5})\,
a_6 = {5}(243)\,
a_6= 1215\,

TERMINO GENERAL DE UNA PROGRESION ARITMETICA

El término general de una progresión aritmética es aquel en el que se obtiene cualquier término sumándole la diferencia al término anterior. El término de una progresión aritmética es la expresión que nos da cualquiera de sus términos, conocidos alguno de ellos y la diferencia de la progresión. La fórmula del término general de una progresión aritmética es:
a_n = a_1 + {(n-1)}{d} \,
Donde d es un número real llamado diferencia. Si el término inicial de una progresión aritmética es a\, y la diferencia común es d\,, entonces el término n\,-ésimo de la sucesión viene dada por
a + nd\,,    n = 0, 1, 2,... si el término inicial se toma como el cero.
a + (n-1)d\,    n = 1, 2, 3,... si el término inicial se toma como el primero.
La primera opción ofrece una fórmula más sencilla, pero emplea una terminología más confusa, ya que no es común en el lenguaje el uso de "cero" como ordinal. Generalizando, sea la progresión aritmética:
a_1, a_2, a_3,..., a_m,..., a_n\, de diferencia d\,
tenemos que

a_1 = a_1\,
a_2 = a_1 + d\,
a_3 = a_2 + d\,
...
a_{n-1} = a_{n-2} + d\,
a_n = a_{n-1} + d\,
sumando miembro a miembro todas esas igualdades, y simplificando términos semejantes, obtenemos:
 a_n = a_1 + (n-1)d\,
expresión del término general de la progresión, conocidos su primer término y la diferencia. Pero también podemos escribir el término general de otra forma. Para ello consideremos los términos a_m\, y a_n\, (m<n\,) de la progresión anterior y pongámolos en función de a_1\,:
a_m = a_1 + (m-1)d\,
a_n = a_1 + (n-1)d\,
Restando ambas igualdades, y trasponiendo, obtenemos:
 a_n = a_m + (n-m)d\,
expresión más general que (I) pues nos da los términos de la progresión conociendo uno cualquiera de ellos, y la diferencia.
Dependiendo de que la diferencia d\, de una progresión aritmética sea positiva, nula o negativa, tendremos:
d>0: progresión creciente. Cada término es mayor que el anterior.
d=0: progresión constante. Todos los términos son iguales.
d<0: progresión decreciente. Cada término es menor que el anterior.

PROGRESION ARITMETICA

En matemáticas, una progresión aritmética es una serie de números tales que la diferencia de dos términos sucesivos cualesquiera de la secuencia es una constante, cantidad llamada diferencia de la progresión o simplemente diferencia o incluso "distancia".
Por ejemplo, la sucesión 3, 5, 7, 9, 11,... es una progresión aritmética de constante (o diferencia común) 2.

PRODUCTOS SIMILARES

Primorial
El primorial (sucesión A002110 en OEIS) se define de forma similar al factorial, pero sólo se toma el producto de los números primos menores o iguales que n.

Doble factorial

Se define el doble factorial de n como:
n!! = \begin{cases} 

 1 & \mbox{si } n=0\mbox{ o }n=1
   \\
   2 \times 4 \times 6 \times ... \times (n-2) \times n \ & \mathrm{si}\  n\ \mathrm{es}\ \mathrm{par} 
\\
1 \times 3 \times 5 \times ... \times (n-2) \times n \  &  \mathrm{si}\  n\ \mathrm{es}\ \mathrm{impar} \\\end{cases}

Por ejemplo, 8!! = 2 · 4 · 6 · 8 = 384 y 9!! = 1 · 3 · 5 · 7 · 9 = 945. La sucesión de dobles factoriales (sucesión A006882 en OEIS) para n = 0, 1, 2, \dots empieza así:
1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, ...
La definición anterior puede extenderse para definir el doble factorial de números negativos:
(n-2)!!=\frac{n!!}{n}.
Y esta es la sucesión de dobles factoriales para n= -1, -3, -5, -7, \dots\,:
1, -1, \tfrac{1}{3}, -\tfrac{1}{15}, \dots
El doble factorial de un número negativo par no está definido.
Algunas identidades de los dobles factoriales:
  1. n!=n!!(n-1)!! \,
  2. (2n)!!=2^nn! \,
  3. (2n+1)!!={(2n+1)!\over(2n)!!}={(2n+1)!\over2^nn!}
  4. (2n-1)!!={(2n-1)!\over(2n-2)!!}={(2n)!\over2^nn!}
  5. \Gamma\left(n+{1\over2}\right)=\sqrt{\pi}\,\,{(2n-1)!!\over2^n}
  6. \Gamma\left({n\over2}+1\right)=\sqrt{\pi}\,\,{n!!\over2^{(n+1)/2}}